AI Roadmap Workbook for Non-Technical Business Leaders
A clear, hype-free workbook showing how AI can truly benefit your business — and where it may not be useful.
The Dev Guys – Mumbai — Think deeply. Build simply. Ship fast.
Why This Workbook Exists
Modern business leaders face pressure to adopt AI strategies. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Declining AI entirely because of confusion or doubt.
This workbook offers a balanced third option: a calm, realistic way to identify where AI truly fits in your business — and where it doesn’t.
You don’t have to be technical; you just need to know your operations well. AI is simply a tool built on top of those foundations.
Best Way to Apply This Workbook
You can complete this alone or with your management team. The aim isn’t to finish quickly but to think clearly. By the end, you’ll have:
• Clear AI ideas that truly affect your P&L.
• Recognition of where AI adds no value — and that’s okay.
• A structured sequence of projects instead of random pilots.
Use it for insight, not just as a template. A good roadmap fits on one slide and makes sense to your CFO.
AI planning is business thinking without the jargon.
Step 1 — Business First
Begin with Results, Not Technology
The usual focus on bots and models misses the real point. Instead, begin with clear results that matter to your company.
Ask:
• What top objectives are driving your business now?
• Where are teams overworked or error-prone?
• Which decisions are delayed because information is hard to find?
AI matters when it cloud infrastructure affects measurable outcomes like profit or efficiency. Only link AI to real, trackable business metrics.
Leaders who skip this step collect shiny tools; those who follow it build lasting leverage.
Step 2 — See the Work
Map Workflows, Not Tools
Before deciding where AI fits, observe how work really flows — not how it’s described in meetings. Ask: “What happens from start to finish in this process?”.
Examples include:
• Lead comes in ? assigned ? follow-up ? quote ? revision ? close/lost.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice issued ? tracked ? escalated ? payment confirmed.
Inputs, actions, outputs — that’s the simple structure. AI adds value where inputs are messy, actions are repetitive, and outputs are predictable.
Rank and Select AI Use Cases
Evaluate Each Use Case for Business Value
Not every use case deserves action; prioritise by impact and feasibility.
Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Big strategic initiatives take time but deliver scale.
• Nice-to-Haves — low impact, low effort.
• Delay ideas that drain resources without impact.
Add risk as a filter: where can AI act safely, and where must humans approve?.
Small wins set the foundation for larger bets.
Laying Strong Foundations
Data Quality Before AI Quality
AI projects fail more from poor data than bad models. Clarity first, automation later.
Design Human-in-the-Loop by Default
AI should draft, suggest, or monitor — not act blindly. Build confidence before full automation.
Common Traps
Steer Clear of Predictable Failures
01. The Demo Illusion — excitement without strategy.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Full Automation Fantasy — imagining instant department replacement.
Define ownership, success, and rollout paths early.
Partnering with Vendors and Developers
Your role is to define the problem clearly, not design the model. State outcomes clearly — e.g., “reduce response time 40%”. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.
Transparency about failures reveals true expertise.
Signs of a Strong AI Roadmap
How to Know Your AI Strategy Works
It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.
Essential Pre-Launch AI Questions
Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Do we have data and process clarity?
• Where will humans remain in control?
• How will success be measured in 90 days?
• What’s the fallback insight?
Conclusion
Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. True AI integration supports your business invisibly.